De Novo Reconstruction of Consensus Master Genomes of Plant RNA and DNA Viruses from siRNAs

نویسندگان

  • Jonathan Seguin
  • Rajendran Rajeswaran
  • Nachelli Malpica-López
  • Robert R. Martin
  • Kristin Kasschau
  • Valerian V. Dolja
  • Patricia Otten
  • Laurent Farinelli
  • Mikhail M. Pooggin
چکیده

Virus-infected plants accumulate abundant, 21-24 nucleotide viral siRNAs which are generated by the evolutionary conserved RNA interference (RNAi) machinery that regulates gene expression and defends against invasive nucleic acids. Here we show that, similar to RNA viruses, the entire genome sequences of DNA viruses are densely covered with siRNAs in both sense and antisense orientations. This implies pervasive transcription of both coding and non-coding viral DNA in the nucleus, which generates double-stranded RNA precursors of viral siRNAs. Consistent with our finding and hypothesis, we demonstrate that the complete genomes of DNA viruses from Caulimoviridae and Geminiviridae families can be reconstructed by deep sequencing and de novo assembly of viral siRNAs using bioinformatics tools. Furthermore, we prove that this 'siRNA omics' approach can be used for reliable identification of the consensus master genome and its microvariants in viral quasispecies. Finally, we utilized this approach to reconstruct an emerging DNA virus and two viroids associated with economically-important red blotch disease of grapevine, and to rapidly generate a biologically-active clone representing the wild type master genome of Oilseed rape mosaic virus. Our findings show that deep siRNA sequencing allows for de novo reconstruction of any DNA or RNA virus genome and its microvariants, making it suitable for universal characterization of evolving viral quasispecies as well as for studying the mechanisms of siRNA biogenesis and RNAi-based antiviral defense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach for annotation of transposable elements using small RNA mapping

Transposable elements (TEs) are mobile genomic DNA sequences found in most organisms. They so densely populate the genomes of many eukaryotic species that they are often the major constituents. With the rapid generation of many plant genome sequencing projects over the past few decades, there is an urgent need for improved TE annotation as a prerequisite for genome-wide studies. Analogous to th...

متن کامل

De novo DNA methylation induced by siRNA targeted to endogenous transcribed sequences is gene-specific and OsMet1-independent in rice.

Small interfering RNA (siRNA) is an essential factor for epigenetic modification of the genome. Recent studies have suggested that endogenous siRNAs induce DNA methylation, chromatin modification and chromatin inactivation at homologous sequences. We have shown that siRNAs targeted to promoter regions of endogenous rice genes induce strong DNA methylation of the targeted sequences, but transcri...

متن کامل

Tomato chlorotic mottle virus is a target of RNA silencing but the presence of specific short interfering RNAs does not guarantee resistance in transgenic plants.

Tomato chlorotic mottle virus (ToCMoV) is a begomovirus found widespread in tomato fields in Brazil. ToCMoV isolate BA-Se1 (ToCMoV-[BA-Se1]) was shown to trigger the plant RNA silencing surveillance in different host plants and, coinciding with a decrease in viral DNA levels, small interfering RNAs (siRNAs) specific to ToCMoV-[BA-Se1] accumulated in infected plants. Although not homogeneously d...

متن کامل

The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants.

RNA silencing comprises a set of sequence-specific RNA degradation pathways that occur in a wide range of eukaryotes, including animals, fungi and plants. A hallmark of RNA silencing is the presence of small interfering RNA molecules (siRNAs). The siRNAs are generated by cleavage of larger double-stranded RNAs (dsRNAs) and provide the sequence specificity for degradation of cognate RNA molecule...

متن کامل

Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses

Dengue virus (DENV 1-4) represents the major emerging arthropod-borne viral infection in the world. Currently, there is neither an available vaccine nor a specific treatment. Hence, there is a need of antiviral drugs for these viral infections; we describe the prediction of short interfering RNA (siRNA) as potential therapeutic agents against the four DENV serotypes. Our strategy was to carry o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014